
Journal of Solid State Chemistry 185 (2012) 42–48
Contents lists available at SciVerse ScienceDirect
Journal of Solid State Chemistry
0022-45

doi:10.1

n Corr

E-m
journal homepage: www.elsevier.com/locate/jssc
Theoretical investigations of the physical properties of zircon-type YVO4
Zuocai Huang a, Jing Feng a,b, Wei Pan a,n

a State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
b Key Laboratory of Advanced Materials of Precious-Nonferrous Metals, Education Ministry of China, and Key Lab of Advanced Materials of Yunnan Province, Kunming University of

Science and Technology, Kunming 650093, China
a r t i c l e i n f o

Article history:

Received 11 July 2011

Received in revised form

27 October 2011

Accepted 31 October 2011
Available online 7 November 2011

Keywords:

YVO4

Zircon

First principles

Mechanical properties
96/$ - see front matter Crown Copyright & 2

016/j.jssc.2011.10.050

esponding author. Fax: þ86 10 62771160.

ail address: panw@mail.tsinghua.edu.cn (W. P
a b s t r a c t

The crystal structure, electronic properties, elastic properties, hardness and thermodynamic properties

of the laser host material zircon-type YVO4 are studied using the pseudopotential plane wave method

within the local density approximation (LDA) and generalized gradient approximation (GGA). The

calculated ground state values such as lattice parameter, bulk modulus and its pressure derivative, the

band structure and densities of states were in favorable agreement with previous works and the existed

experimental data. The elastic constants Cij, the aggregate elastic moduli (B, G, E), Poisson’s ratio and

elastic anisotropy have been investigated. In YVO4, V–O bonds with shorter bond length and larger

Mulliken population make great contribution to hardness than Y–O bonds. Using quasi-harmonic

Debye model considering the phonon effects, bulk modulus, heat capacity and thermal expansion

coefficient of YVO4 are calculated within a range of 0–6 GPa and 0–1200 K.

Crown Copyright & 2011 Published by Elsevier Inc. All rights reserved.
1. Introduction

Orthovanadates (RVO4, R¼trivalent metal) are found to be used in
many fields for their great magnetic, optical and electronic properties
and they have been widely used as cathodoluminescent materials,
scintillators and thermophosphors [1–3]. Recently, diode-pumped
solid state lasers have attracted much attention and been widely
applied to a number of fields such as military, industry and so on.
Among these solid states laser ceramics, YVO4 has been widely
investigated [4–6] for its high damage threshold, high conductivity,
good mechanical properties and chemical stability, which are impor-
tant for solid states lasers [7,8]. Other kinds of orthovanadates, such
as GdVO4 and ScVO4, have also been studied as laser materials [9,10].

It is well known that thermal conductivity is very important
for solid state lasers. The temperature of lasers will rise when
energy is released and the efficiency of the laser will come down.
What is more, remanent thermal will affect the refractive index,
and then result in thermal focusing, stress-induced birefringence.
Therefore, the laser output power is limited. As we know, thermal
properties depend on mechanical properties of the laser material.
Elastic constants, Young’s modulus, Poisson’ ratio and hardness
are very important for laser materials, as well as the anisotropic
index of laser materials. In recent years, few efforts have been
made to study mechanical and thermal properties from experi-
ments and theoretical calculations [11–15]. Wang et al. [11]
studied the structural properties of the zircon-type phase of
011 Published by Elsevier Inc. All

an).
YVO4 at high pressure and got the modulus of zircon-type phase
of YVO4. Ruju et al. [12] studied the elastic constants of YVO4

single crystal. Zhang et al. [13] studied the thermal and laser
properties of Nd:YVO4 crystal and got the thermal expansion and
specific heat of Nd:YVO4. Morikawa et al. [14] compared the
thermal conductivities of several laser materials including YVO4

by temperature wave analysis. Several studies have reported
electronic structure and band gap of YVO4 from experimental
and theoretical calculations [15]. The study of material properties
such as elastic constants and thermodynamic properties under
high temperature and pressure are very important in practical
applications, especially for solid state lasers. To our knowledge,
there is no systematic report on mechanical and thermodynamic
properties of YVO4.

In this paper, we focused on theoretical investigations of the
elastic properties, hardness and electronic structure of YVO4 at
zero pressure and zero temperature, and also thermodynamic
properties at high temperatures and high pressures. Computational
methods are described in Section 2. In Section 3, we discussed the
calculated mechanical and thermodynamic properties. Finally, a
brief summary is given.
2. Computational details and theory

2.1. Computational details

The zircon type phase YVO4 belongs to space group I41/amd

(a¼b¼7.1183 Å, c¼6.2893 Å) [16]. The V ions are tetrahedrally
coordinated and Y ions are in distorted dodecahedral
rights reserved.
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coordination. The unit cell of the crystal structure is presented in
Fig. 1. All calculations of the electronic structure and elastic
properties are performed using the pseudo-potential plane-wave
method within the framework of the density functional theory
and implemented through the Cambridge Serial Total Energy
Package (CASTEP) Program [17]. Vanderbilt-type ultra-soft
pseudo-potentials [18] are employed to describe the electron–
ion interactions (O2s22p4, V3s23p63d34s2 and Y4s24p64d15s2).
Exchange-correlation effects were taken into account using the
generalized gradient approximation (GGA) and local density
approximation (LDA) as compared. The CA-PZ [19] and PBE [20]
functions of the LDA and GGA were chosen, respectively. The
plane-wave cutoff energy 600 eV was employed in the calcula-
tions. It assured a high level convergence with respect to all
parameters: the total-energy difference within 2.0�10�5 eV/
atom, the maximum Hellmann–Feynaman force within 0.03 eV/
Å, the maximum stress within 0.05 GPa and the maximum atom
displacement with 1.0�10�3 Å. The Brillouin zone sampling was
carried out using the 6�6�6 set of the Monkhost–Pack mesh
[21].

2.2. Structural properties

The energy–volume (E–V) curve can be obtained by fitting the
calculated E–V data to the third Birch–Murnaghan EOS [22]

EðVÞ ¼ aþbV�2=3
þcV�4=3

þdV�2
ð1Þ

where a, b, c and d are the fitting parameters. To calculate the
total energy E and the corresponding volume V, a series of
different lattice parameters (a and c) are taken into account.
From Table 1, the calculated equilibrium lattice parameters and
Fig. 1. Crystal structure of zircon-type YVO4 (space group: I41/amd).

Table 1

Lattice parameters (Å), elastic constants (GPa), bulk modulus (GPa) and their first pressu

experimental data.

Method a c B B0

LDA 7.04 6.195 147.1a, 145.9b 4.1b

GGA 7.18 6.314 120.0a

Exp. by othersc 7.118 6.289 130 4.4

Cal. by othersd 7.05 6.202 142.8

a From B¼(2(C11þC12)þC33þ4C13)/9.
b From Birch–Murnaghan equation of state.
c Ref. [12].
d Ref. [23].
bulk modulus are in good agreement with experimental data [12]
and other theoretical results [23], respectively.

The second-order elastic constants were determined by means
of linear fitting the stress–strain curves. We applied several
different types of Lagrangian strain on crystals and calculated
Cauchy stress for each strain after optimizing the internal degrees
of freedom. Our calculated elastic constants Cij of YVO4 at zero
temperature and zero pressure are listed in Table 1. From Table 1,
we can see the calculated elastic constants are in good agreement
with experimental values and other calculation results. According
to independent elastic constants above, the theoretical polycrys-
talline elastic modulus can be obtained. There are two approx-
imation methods to calculate the polycrystalline modulus,
namely the Voigt method [24] and the Reuss method [25]. The
Voigt (BV) and Reuss (BR) bulk moduli are given by [26]

BV ¼ ð2ðC11þC12ÞþC33þ4C13Þ=9 ð2Þ

BR ¼ C2=M ð3Þ

The Voigt shear modulus and the Reuss shear modulus are
defined as

GV ¼ ðMþ3C11�3C12þ12C44þ6C66Þ=30 ð4Þ

GR ¼ 15=ðð18BV Þ=C2
þ6=ðC11�C12Þþ6=C44þ3=C66Þ ð5Þ

M¼ C11þC12þ2C33�4C13 ð6Þ

C2
¼ ðC11þC12ÞC33�2C2

13 ð7Þ

The arithmetic average of the Voigt and the Reuss bounds is
called the Voigt–Reuss–Hill (VRH) average, which is often used to
calculate elastic modulus of polycrystal. The VRH averages for
shear modulus (G) and bulk modulus (B) are given by

G¼ ðGRþGV Þ=2 ð8Þ

B¼ ðBRþBV Þ=2 ð9Þ

Polycrystalline Young’s modulus (E), and Poisson’s ratio (v) are
then calculated by

E¼
9BG

3BþG
ð10Þ

n¼ 3B�2G

2ð3BþGÞ
ð11Þ

2.3. Thermodynamic properties

In order to investigate thermodynamic properties of YVO4, the
quasi-harmonic Debye model [27] is introduced. The quasi-
harmonic Debye model has been successfully applied to investi-
gate thermodynamic properties of several materials [28–30]. In
the quasi-harmonic Debye model, the non-equilibrium Gibbs
re derivatives of YVO4 calculated by LDA and GGA, along with other theoretical and

C11 C33 C44 C66 C12 C13

271.5 337.2 46.4 19.5 54.6 92.1

216.1 284.8 45.5 21.9 44.3 78.8

244.5 313.7 48.2 16.2 48.93 81.1

269.0 289.8 46.7 22.3 41.1 79.4



Fig. 2. Energy band structure of zircon-type YVO4 along high symmetry directions

in the Brillouin zone. The zero of energy corresponds to the Fermi level.
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function Gn
ðV ; P,TÞ takes the form of

Gn
ðV ;P,TÞ ¼ EðVÞþPVþAvib½YðVÞ; T�, ð12Þ

where E(V) is the total energy per unit cell, PV corresponds to the
constant hydrostatic pressure condition, YðVÞ is the Debye
temperature, and Avib½YðVÞ; T� is the vibrational term, which can
be written using the Debye model of the phonon density of states
as [31].

AvibðY; TÞ ¼ nkT
9Y
8T
þ3lnð1�e�Y=T Þ�D

Y
T

� �� �
ð13Þ

where n is the number of atoms per formula unit, DðY=TÞ

represents the Debye integral, which is defined as

DðyÞ ¼
3

y3

Z y

0

x3

ex�1
dx ð14Þ

For an isotropic solid, Y is expressed as [31]

YD ¼
h

k
½6p2V1=2n�1=3f ðsÞ

ffiffiffiffiffi
Bs

M

r
ð15Þ

where M is the molecular mass per unit cell; Bs is the adiabatic
bulk modulus, which is approximately given by the static com-
pressibility [27]

BsffiBðVÞ ¼ V
@2EðVÞ

@V2
ð16Þ

and f ðsÞ is given by Refs. [32,33]; Poisson’s s is taken as 0.336 and
0.318 for LDA and GGA calculations, respectively. Therefore, the
non-equilibrium Gibbs function Gn

ðV ; P,TÞ as a function of (V;P, T)
can be minimized with respect to volume V

@Gn
ðV ; P,TÞ

@V

� �
P,T

¼ 0 ð17Þ

By solving Eq. (15), one can obtain the thermal equation-of-
states (EOS) V(P, T). The heat capacity CV and the thermal
expansion coefficient a are given by [34].

CV ¼ 3nk 4D
Y
T

� �
�

3Y=T

eY=T�1

� �
ð18Þ

S¼ nk 4D
Y
T

� �
�3lnð1�e�Y=T Þ

� �
ð19Þ

a¼ gCV

BT V
ð20Þ

where g is the Grüneisen parameter, which is defined as

g¼�d lnYðVÞ
d lnV

ð21Þ

Through the quasi-harmonic Debye model, one could calculate
thermodynamic quantities of YVO4 at any temperature and
pressure from the calculated E–V data at T¼0 and P¼0.
Fig. 3. Calculated partial density of states and total density of states of zircon-type

YVO4.
3. Results and discussion

3.1. Electronic properties

The calculated lattice parameters with experimental and
theoretical data are shown in Table 1. The calculated results keep
in good agreement with the experimental and other theoretical
results. And it is known that LDA usually underestimates the
lattice constants, while GGA overestimates the lattice constants.

Electronic band structure and density of states often provide
sufficient information for a thorough characterization of electro-
nic properties of a material. The energy band structure, total and
partial density of states (DOS) of YVO4 were calculated by LDA
and GGA. For simplicity, only the results of LDA are presented in
Figs. 2 and 3. The calculated band gap Eg of YVO4 is 3.11 eV, which
is very close to other theoretical value of 3.0 eV [35]. But it is
smaller than the experimental value of 3.7 eV [36]. Such a
discrepancy is expected when the DFT method is used.

From Fig. 3, we can find that the DOS can be mainly divided
into four parts. The first part extending from �39.6 eV to
�36.5 eV is of the combination of Y s and V p states; The deeper
than valence band extending from �20.1 eV to �14.9 eV is of the
combination of O s and Y p states; the valence band from �4.9 eV
to 0 eV is mainly the contribution of O p states; the conduction
band extending from 3.2 eV to 12.5 eV is mainly composed of V d

and Y d states.
3.2. Mechanical properties

As is known, elastic constants determine the response of the
crystal to external force. For tetragonal crystals, there are six
independent elastic constants. The calculated elastic constants of
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YVO4 are shown in Table 1. It can be seen that elastic constants
calculated in this paper keep in good agreement with experi-
mental results [12] and other theoretical values [23]. From
Table 1, we can find the results obtained from LDA are higher
than the results from GGA. It is known that LDA underestimates
the lattice constants and overestimates elastic constants, while
GGA overestimates lattice constants and underestimates elastic
constants. The mechanical stability criteria for tetragonal YVO4 is

ðC11�C12Þ40, ð2C11þC33þ2C12þ4C13Þ40, ðC11þC33�2C13Þ40,

C1140, C3340, C4440, C6640 ð22Þ

The elastic constants in Table 1 satisfy all of these conditions
and it indicates that YVO4 is mechanically stable. In present
calculations, C11oC33, indicating that the bonding strength along
[100] and [010] direction is weaker than that of the bonding along
[001]. C444C66, suggesting that the [100](010) shear is easier
than the [100](001) shear. According to Pugh’s criterion [37], the
material is supposed to be brittle (ductile), if the B/G value is less
(greater) than 1.75. The other condition for being brittle /ductile
in nature, derived from Pugh’s criterion for B/G is that when v is
less than 0.26, the material is brittle, otherwise it is ductile. From
Table 2, B/G is 2.72 and v is 0.34, so zircon-type YVO4 is ductile.
Compared with single crystal mechanical properties, polycrystal-
line mechanical properties (such as bulk modulus, shear modulus,
Young’s modulus and Poisson’s ratio) usually have higher prac-
tical application value. Using the Voigt–Reuss–Hill approximation
[26], those properties were obtained from elastic constants of
YVO4 single crystal and listed in Table 2.

It is well known that microcracks are easily induced in the
materials due to the significant elastic anisotropy [38]. Therefore,
it is important to calculate the elastic anisotropy in order to
improve their mechanical durability. From the crystal structure of
YVO4, one could suppose that it has high anisotropy. Some
researchers have done many studies on this aspect and want to
introduce a universal index to describe elastic anisotropy of
different types of crystals. Zener [39] first introduced an aniso-
tropy index to quantify the elastic anisotropy of single crystals,
but it is just applicable to cubic crystals. In order to quantify the
anisotropy of all kinds of elastic single crystals, Shivakumar and
Martin [40] introduced universal elastic anisotropy index AU for
all elastic single crystals

AU
¼ 5

GV

GR
þ

BV

BR
�6 ð23Þ

where G and B are the shear modulus and bulk modulus,
respectively; V and R represent the Voigt and Reuss estimations
for B and G, respectively. AU is identically zero for a locally
isotropic single crystal. The departure of AU from zero defines
the extent of single crystal anisotropy and account for both the
shear and the bulk modulus contribution unlike all other existing
anisotropy measures. For YVO4, AU

¼2.41, which means YVO4 is
anisotropic [40].

Furthermore, a three-dimensional (3D) curved surface, repre-
senting the dependence of elastic properties on crystallographic
directions, can indicate the elastic anisotropy of crystal structure.
Young’s modulus with directional dependence for tetragonal
Table 2
Bulk modulus BR, BV and BH, shear modulus GR, GV and GH, Young’s modulus E (in

GPa) and Poisson’s ratio v of YVO4.

Method BV BR BH GV GR GH v E B/G AU

LDA 150.9 147.1 149.0 65.2 44.1 54.7 0.336 146.2 2.72 2.41

GGA 124.6 120.0 122.3 56.9 44.1 50.5 0.318 133.2 2.42 1.49
crystals is defined as follows [41]:

1

E
¼ S11ða

4
1þa4

2ÞþS33a4
3þð2S12þS66Þa

2
1a2

2þð2S13þS44Þða
2
3�a4

3Þ

ð24Þ

where Sij is the elastic compliance constants, and a1, a2 and a3 are
the directional cosines to the X, Y and Z axes, respectively. Fig. 4a
illustrates Young’s modulus with the directional dependence of
YVO4. For an isotropic system, the curved surface should be
spherical, while the deviation from the spherical shape indicates
the extent of elastic anisotropy. As shown in Fig. 4a, Young’s
modulus along X, Y and Z axes have greater value, and the 3D
surface of YVO4 deviates from the spherical shape largely, which
means YVO4 is highly anisotropic. The projections of the 3D
surfaces can illustrate the elastic anisotropy more directly and
reveal the inter-layer anisotropy, so the projection for YVO4 is
analyzed as shown in Fig. 4b. The projection for an isotropic
crystal is circular and for YVO4 it deviates from the circular shape
significantly. Therefore, YVO4 has a high degree of elastic aniso-
tropy, which is in accordance with the result from the universal
elastic anisotropy index analysis.

Hardness, based on the first-principles calculations can be
accurately predicted. According to Gao’s work [42], the hardness
Fig. 4. (a) Directional dependence of Young’s modulus in zircon-type YVO4 and (b)

projections of the directional dependent Young’s modulus in different planes for

zircon-type YVO4. The units are in GPa.



Fig. 5. Relationship between volume and temperature at applied pressures for

zircon-type YVO4.

Fig. 6. Relationship between bulk modulus and temperature at applied pressures

for zircon-type YVO4.
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of covalent crystals depends on the sum of resistance of each
bond per unit volume and can be characterized by average
overlap populations. For complex multi-bonding compounds,
the hardness of the m-type bond can be calculated as follows:

Hm
u ðGPaÞ ¼ 740Pmðumb Þ

�5=3
ð25Þ

umb ¼
ðdmÞ3VcellP

v½ðd
v
Þ
3Nu

b�
ð26Þ

where the constant 740 is the proportional coefficient fitted from
hardness of diamond, Pm is the Mulliken overlap population of the
m-type bond, umb is the volume of a bond of type m, dm is the bond
length of type m, Nu

b is the bond number of type n, Vcell is the cell
volume of each YVO4 compound. The calculated hardness Hv from
Me–O bond of YVO4 is listed in Table 3. For there are no reports on
hardness of YVO4 by experiments or calculations, our calculated
results can serve as a reference for further investigation. In YVO4,
the V–O bonds with shorter bond length and larger Mulliken
population make greater contribution to hardness than the Y–O
bonds. From the Mulliken population, V cations exhibit electro-
negativity (0.90 for Al) such that V–O bonds are rather covalent
whereas Y cations with high electronegativity (1.46 for Y) gen-
erally establish Y–O bonds exhibiting an ionic character.

3.3. Thermodynamic properties

Thermodynamic properties of YVO4 are determined in the tem-
perature range from 0 to 1200 K, where the quasi-harmonic model
remains fully valid. The pressure effect is studied in the 0–6 GPa
range. The temperature effects on the volume are shown in Fig. 5. The
volume increases with increasing temperature. As the pressure
increases, the rate of increase becomes a little slower. Fig. 6 presents
the relationship of bulk modulus as a function of temperature T up to
1200 K at different pressures. When To200 K, bulk modulus is nearly
a constant, but it drops when T4200 K, which is in accordance with
the relationships between volume and temperature as shown in
Fig. 5. From the results obtained for the volume and bulk modulus, it
appears that the effect of increasing pressure on the material is the
same as decreasing temperature of the material.

The investigation on the heat capacity of crystals is an old topic of
condensed matter physics with which illustrious names are asso-
ciated [43]. The heat capacity of a substance not only provides
essential insight into its vibrational properties, but is also mandatory
for many applications. The heat capacities CV and CP versus tempera-
ture at 0–6 GPa pressures is shown in Fig. 7a and b. At high
temperatures, the constant volume heat capacity CV tends to the
Dulong–Petit limit, which is common to all solids [44]. At sufficiently
low temperatures, CV is proportional to T3 [45]. At intermediate
temperatures, however, the temperature dependence of CV is gov-
erned by the details of vibrations of the atoms and for a long time
could only be determined from experiments.

The thermal expansion coefficient a with temperature and pres-
sure for YVO4 is presented in Fig. 8. From Fig. 8 the thermal expansion
coefficient a increases with T3 nearly at low temperatures, gradually
the rate becomes gentler, and then approaches a linear increase at
high temperatures. The effects of pressure on the thermal expansion
Table 3
Mulliken population analysis and Hardness of YVO4.

Atom s p d Total Charge (e) Bond Pop

O 1.85 4.74 0 6.59 �0.59 V–O 0.67

V 2.20 6.46 3.44 12.10 0.90 Y–O 0.26

Y 2.21 6.13 1.20 9.54 1.46 0.08
coefficient a are very small at low temperatures; the effects become
obvious at high temperature. As pressure increases, the thermal
expansion coefficient a decreases. At normal pressure, the linear
thermal expansion coefficient of YVO4 from 298 K to 572.5 K is
aa ¼ 2:2� 10�6=K and ac ¼ 8:4� 10�6=K [13], so the thermal expan-
sion for YVO4 is a¼ 12:8� 10�6=K. The experimental value of
thermal expansion coefficient is very close to the calculated result
a¼ 13:4� 10�6=K, which means the calculated results are reliable.
4. Conclusions

The physical properties of zircon-type YVO4 are investigated
by first-principles calculations. The calculated lattice parameter is
ulation Length (Å) Nu O (Å3) Vb
u Hu HCal

1.69877 8 153.4 4.03 48.64 8.71

2.26145 8 9.50 4.52

2.39586 4 11.30 1.04



Fig. 7. (a) Heat capacity versus temperature at pressures of 0, 2, 4 and 6 GPa and

(b) correction, CP–CV, due to implicit effects at various pressures.

Fig. 8. Thermal expansion versus temperature at pressures of 0, 2, 4 and 6 GPa.
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very close to experimental results and other theoretical data. We
calculated the total energy of zircon-type YVO4 at different
volumes and modified the E–V relationship by Birch–
Murnaghan EOS.

The elastic constants, the aggregate elastic modulus (B, G, E),
Poisson’s ratio, the anisotropy index and hardness of YVO4 are
also calculated. The calculated elastic constants are in good
agreement with experimental and other theoretical results.
YVO4 is mechanically stable due to the mechanical stability
criteria for tetragonal structure. According to the critical values
for B/G and Poisson’s ratio, zircon-type YVO4 is a kind of ductile
material. For YVO4, V–O bonds make greater contributions to
hardness than Y–O.

The thermodynamic properties such as heat capacity and
thermal expansion coefficient are predicted using the quasi-
harmonic Debye model. It is found that the high temperature
leads to a smaller bulk modulus, a larger heat capacity, and a
larger thermal expansion coefficient at a given pressure. However,
the high pressure results in a larger bulk modulus, a smaller heat
capacity and a smaller thermal expansion coefficient at a given
temperature. The heat capacity and the thermal expansion
coefficient approach to a constant value at high temperatures
and high pressures.
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